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Why Text-to-SQL Systems?

● The imminent age of information has made data an 

indispensable part of all human activities

● Many different data sets are being generated by 

users, systems and sensors

● Data repositories can benefit many types of users 

looking for insights, patterns, information, etc.

● However, not all users have equal access to data

3



Why Text-to-SQL Systems?

● Data volume and complexity make it difficult 

to query data
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Databases are complex



Why Text-to-SQL Systems?

5

Data Query Interfaces are user-unfriendly

Form-based interfaces have limited query capabilities

Low-level query interfaces are intended for programmers



Why Text-to-SQL Systems?

● Data volume and complexity make it 

difficult to query data

● Database query interfaces are notoriously 

user-UNFRIENDLY

What is data democratisation?

● Empower everyone to access, use, understand 
and derive value from data

● Lift the technical barriers that impede access 
to data and eliminate dependency to IT 
experts

● Design tools that are aimed for the casual user

● An organization-wide cultural stance
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SELECT * FROM CITIES
WHERE 50 <
(SELECT AVG(TEMP_F)
FROM STATS WHERE
CITIES.ID = STATS.ID);



Why Text-to-SQL Systems?

Which cities have 
year-round average 
temperature above 

50 degrees?

To satisfy the needs of casual users of databases, 
we must break through the barriers that presently prevent 
these users from freely employing their native languages 

Ted Codd (circa: 1974)

   Expressing queries in natural language can open up data access to everyone
7



Tutorial Outline

1. The Text-to-SQL Problem - 5’

2. Available Benchmarks - 5’

3. A Taxonomy of Text-to-SQL Deep Learning Systems - 35’

4. Key Text-to-SQL Systems - 20’

5. Challenges and Research Opportunities - 10’

1. Schema Linking

2. Language Processing

3. Input Encoding

4. Output Decoding

5. Neural Training

6. Output Refinement

SELECT * FROM CITIES
WHERE 50 <
(SELECT AVG(TEMP_F)
FROM STATS WHERE
CITIES.ID = STATS.ID);
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The Text-to-SQL Problem
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The Text-to-SQL Problem
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SELECT city FROM cities
WHERE 50 < (SELECT AVG(max_temperature)
FROM weather_daily_forecast_log w 
WHERE cities.city_id = w.city_id);

Phoenix

Which cities have 
year-round average 
temperature above 

50 degrees?



Challenges: From the NL side

● Complexity of NL
○ Ambiguity

○ References - Schema Linking

○ Inferences

○ Vocabulary Gap

● User Mistakes
○ Spelling mistakes

○ Syntactical/Grammatical mistakes
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“composer” vs “songwriter”

“President (of the USA) before Obama?”

“model” refers to car.model OR engine.model ?

“Show information about Paris”

“Show most actor played movies “

“Which singer won the most Grammies?”

Grammys

City or person?

??



Challenges: From the SQL side
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● Complex Syntax
○ SQL is a structured language with a strict 

grammar and limited expressivity

● Database Structure
○ The user’s data model may not match the 

data schema

“Which countries have a GDP higher than the EU average?”

“Find directors who released a movie this year” 

Sounds simple 
but needs a 

complex nested 
query

Simple NLQ that 
might need 3,4 

or 5 JOINs



A brief timeline of deep learning text-to-SQL research
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Available Benchmarks
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Several pain points:

✘ No common datasets
○ System evaluations have used different datasets of varying size 

and complexity.

✘ Small or proprietary datasets
○ e.g., TPC-H (100MB) and DBLP (56MB)

✘ No standard, small query sets
○ Different test queries, often not available to reproduce the 

experiments.

✘ Incomparable effectiveness evaluations
○ none, user study, manual evaluation, comparison to gold 

standard queries
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Text-to-SQL Benchmarks
Year Dataset Examples Databases
1994 ATIS 275 1
1996 GeoQuery 525 1
2003 Restaurants 39 1
2014 Academic 179 1

2017

IMDb 111 1
Yelp 68 1

Scholar 396 1
WikiSQL 80,654 24,241

2018
Advising 281 1
Spider 10,181 200

2020 MIMICSQL 10,000 1

2021
Spider-Syn 8,034 160
Spider-DK 535 ?

KaggleDBQA 272 8

Two new large benchmarks revolutionise text-to-SQL research, opening the door to machine learning 



WikiSQL

● Large crowd-sourced dataset for developing NL interfaces for relational 
databases

○ 80K NL/SQL pairs over 25K tables

● NL questions on tables gathered from Wikipedia
○ Not entire databases!
○ The SQL queries that can be performed are quite simple

● Contains many mistakes
○ Research suggests that the upper bound has been reached
○ Human accuracy estimated at 88%
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🔗 [2] Seq2SQL (2017)



Player No. Nationality Position Years in 
Toronto

School
/Club 
Team

Leandro 
Barbosa

20 Brazil Guard 2010-2012 Tilibra

Muggsy 
Bogues

14 USA Guard 1999-2001 Wake 
Forest

Jerryd 
Bayless

5 USA Guard 2010-2012 Arizona

... ... ... ... ... ...

WikiSQL: Example

NLQ: 

What nationality is the player Muggsy Bogues?

SQL: 

SELECT nationality 
WHERE player = muggsy bogues

Table: Toronto Raptors all-time roster
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WikiSQL: (Bad) Example

NLQ: 

Name the most late 1943 with late 194 in slovenia

SQL: 

SELECT max(late 1943)
WHERE ! late 1941 = slovenia

Table: Yugoslav Partisans: Composition

! Late 
1941 

Late 
1942

Sept. 
1943

Late 
1943

Late 
1944

1978 Veteran 
membership

Croatia 7000 48000 78000 122000 150000

Slovenia 2000 4000 6000 34000 38000

Serbia 23000  8000 13000 22000 204000

... ... ... ... ... ...
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WikiSQL 
(badly copied)

Wikipedia
(original table)

A table copied incorrectly from Wikipedia resulted to 
the generation of a SQL query that does not make much sense 

and a NLQ that is even more incoherent!



Spider

● Large-scale complex and cross-domain semantic parsing and text-to-SQL dataset 
○ 10,181 questions 
○ 5,693 complex SQL queries 
○ 200 databases from 138 different domains

● Annotated by 11 Yale students

● Queries of varying complexity
○ Categories of difficulty: Easy → Medium → Hard → Extra Hard
○ SQL elements such as JOIN, GROUP BY, UNION, INTERSECT, nested queries

● Better quality and complexity than WikiSQL

19

🔗 [3] Spider (2018)



Spider: Example
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A Taxonomy of Text-to-SQL 
Deep Learning Systems
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Taxonomy Overview of a Deep Learning Text-to-SQL system

Schema 
Linking

None

Query 
Candidates

Database 
Candidates

Candidate 
Matching

NLQ SQL
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Some links might not help create the SQL

Schema Linking

● Consider a human writing a SQL query 
based on a NL specification

● Important to find how elements of the NL 
appear in the DB

● Three main types of schema links:
○ Table links
○ Column links
○ Value links

NLQ:

How many heads of the departments are older than 56 ?

SQL: 

SELECT COUNT(*) 
FROM head 
WHERE age  >  56
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Finding connections between the NLQ and the DB

Table link: head

Value links: head_ID, Department_ID

Table link: department

Value link: age



Schema Linking: Query Candidates

The three questions of schema linking:

● Which parts of the NLQ to consider?
○ Single Tokens

○ Multi-word candidates (n-grams)

○ Named Entities

○ Generate Additional Candidates

● Which parts of the DB to consider?

● How to decide on a match?

NLQ Examples:

● For each department show the budget in billions

● Show all department directors from New York

24

can be found by 
single token 

search

n-gram search 
is needed to find 

these

Can also be 
found using 

NER

What if it is 
stored as “NY” 

in the DB?

Must generate 
additional 
candidates

Look up 
similar values 

in the DB or 
other 

Knowledge 
Bases

“NY”
“N.Y.”

“N. York”
…

🔗 [24] ValueNet (2020)



Schema Linking: Database Candidates

The three questions of schema linking:

● Which parts of the NLQ to consider?

● Which parts of the DB to consider?
○ Table and Column Names

○ Values via Lookup

○ Values via Knowledge Graphs

● How to decide on a match?
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Need an efficient 
method due to 

large size of data

Database 
structures such as 

inverted indices

What if access to 
the data is not 

available?

We can search 
candidates such as 

“New York” in 
external KGs

ConceptNet 
informs us that 
“New York” is a 

state

🔗 [19] IRNet (2019)



Schema Linking: Candidate Matching

The three questions of schema linking:

● Which parts of the NLQ to consider?

● Which parts of the DB to consider?

● How to decide on a match?
○ Exact and partial match

○ Fuzzy/Approximate String Matching

○ Learned Embeddings

○ Classifiers
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Query Candidate DB Candidate Match Method

“department” “department” Exact Match

“budget” “budget in billions” Partial Match

“dept.” department Fuzzy Match

“department director” “head”
Learned Embeddings

Classifiers



Taxonomy Overview of a Deep Learning Text-to-SQL system

Schema 
Linking

Language 
Processing

None

Query 
Candidates

Database 
Candidates

Candidate 
Matching

Word 
Embeddings

Pre-trained 
Language Models

NLQ SQL
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Natural Language Processing

● LSTM Neural Networks (1995) 🔗 [5]

● Word Embeddings
○ One-hot Embeddings

○ Word2Vec (2013) 🔗 [6]

○ GloVe (2014) 🔗 [7]
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● The Transformer (2017) 🔗 [9]

● The rise of language models
■ BERT (2018) 🔗 [10]

■ RoBERTa (2019) 🔗 [11]

■ TaBERT (2020) 🔗 [12]

■ GraPPa (2020) 🔗 [13]

■ BART (2020) 🔗 [28]

■ T5  (2020) 🔗 [29]

How can we give natural language to a neural network?

encoder-decoder

encoder-only



Using Word Embeddings

● Each word of the input is assigned to a 
pre-trained word embedding vector

○ Out of vocabulary problem

● The embedding sequence is then processed 
by a RNN to create a hidden representation

● Major drawbacks of RNNs:
○ Large processing costs for long sequences
○ Hard to make associations of words that are 

not near each other
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'what', 'nationality', 'is', 'the', 'player', 'muggsy', 'bogues'

e1 e2 e3 e4 e7e6e5

Some rare words 
might not have an 

embedding!

h1 h2 h3 h4 h7h6h5

Recurrent Neural Network (e.g., LSTM) 

Rest of the System



Using Transformer-based PLMs: BERT

● A very large pre-trained neural network
○ BERT Base: 110M parameters

○ BERT Large: 340M parameters

● Can be applied to a wide variety of NL tasks
○ The pre-trained model is fine-tuned with 

additional task-specific layers
○ Provided very good results (usually 

state-of-the-art) in many NL tasks
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🔗 [8, 9, 10]  WordPiece (2017), Transformer (2017), BERT (2018)

● Based on Transformer neural networks
○ Each element of the sequence is processed 

simultaneously, decreasing computation 

costs

○ All outputs are based on all other elements 

of the sequence, using attention

● Uses WordPiece embeddings to eliminate 

the out-of-vocabulary problem



GloVe vs Wordpiece

NLQ: What nationality is the player Muggsy Bogues?

● GloVe:
○ 'what', 'nationality', 'is', 'the', 'player', 'muggsy', 'bogues', '?'

● Wordpiece:
○ 'what', 'nationality', 'is', 'the', 'player', 'mug', '##gs', '##y', 'bog', '##ues', '?'
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Unknown 
rare words

Known 
sub-words

Using sub-words, we eliminate the possibility for out-of-vocabulary words, 
as long as all characters were also present during the creation of the embeddings

🔗 [7, 8] GloVe (2014), WordPiece (2017)



BERT: Architecture

● Output: A sequence of tokens of equal 

length to the input

● Uses many stacks of bidirectional 
Transformer encoder layers 

● Input: A sequence of token embeddings
○ Uses Wordpiece embeddings
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Notice the encoder-only 
architecture, which 

produces a 
contextualized 

embedding output

🔗 [10]  BERT (2018)



BERT: Pre-training & Fine-tuning

Pre-training:

● Training corpus of 3.3B words
○ BooksCorpus  (800M  words)

○ English  Wikipedia  (2.5B  words)

● The model is simultaneously pre-trained on 

two tasks
○ Masked Language Modeling (MLM)

○ Next Sentence Prediction (NSP)

Fine-tuning:

● An application of Transfer Learning
○ We have a model (BERT) trained on a very 

large corpus and a more general task
○ We add some extra layers and perform 

additional training on our task

● We must make two decisions
○ How to give our task’s input to BERT
○ How to use BERT’s output to make 

predictions for our task
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Task-specific PLMs: GraPPa

● Initialized by RoBERTa-Large

● Synthetic pre-training data is created from 
tabular datasets like:

○ Spider
○ WikiSQL
○ WikiTableQuestions

● Experiments show better performance in 
text-to-SQL when using GraPPa instead of 
RoBERTa

Pre-training tasks:

● Masked Language Modelling (MLM)

○ Input: NLQ/Table Description + Columns
○ The network must predict the masked words both in the 

NLQ and columns

● SQL Semantic Prediction (SSP)

○ Input: NLQ + Columns
○ The network must predict for each column, if it appears 

in the SQL and its role (e.g. SELECT, GROUP BY)
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🔗 [13] GraPPa (2020)



Encoder-Decoder PLMs

● Another category of very powerful 

transformer-based pre-trained models

● Operate on a sequence-to-sequence 

(text-to-text) framework

● Limited design choices, but very good 

results (e.g., T5-3B + PICARD)
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Encoder Autoregressive 
Decoder

Input Sequence

Output Sequence

NLQ + DB

SQL

🔗 [28, 29] BART (2020), T5 (2020)



Taxonomy Overview of a Deep Learning Text-to-SQL system
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Input Encoding: Separate Encoding

● Used by the first text-to-SQL systems 
(Seq2SQL, SQLNet) for WikiSQL

● The main reason is the different format of 
the NLQ and table columns
○ NLQ: Sequence of words
○ Column names: Sequence of sequences of 

words

● The two different inputs must be combined 
(attention, concatenation, sum, etc.)
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Input Encoding: Serialisation

● Widely used by newer systems 

incorporating language models

● No need to combine different inputs

● The database schema is flattened into a 

sequence of words
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‘How’, ‘many’, ‘heads’, ‘of’, ‘the’, ‘departments’, ‘are’, ‘older’, ‘than’, ‘56, ‘?’, [SEP], 

‘department’, [SEP], ‘name’, [SEP], ‘creation’, [SEP], ‘ranking’, [SEP], 

‘budget_in_billions’, [SEP], ‘num_employes’, [SEP], ’management’, [SEP], 

‘department_id’, [SEP], ‘head_id’, [SEP], ‘temporary_acting’, [SEP], ‘head’, [SEP], 

‘head_id’, [SEP], ‘name’, [SEP], ‘born_state’, [SEP], ‘age’, [SEP]

How many heads of the 
departments are older 

than 56 ?



Input Encoding: NLQ with Each Column Separately

● A unique approach proposed by HydraNet 
(more later on)

● The NLQ is processed with each column 
separately

● Predictions are made for each column 
separately

● Works very well on WikiSQL

● No similar approach for Spider
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Input Encoding: Graph Encoding

● Using graphs allows the preservation of all 

the schema relations
○ Which columns belong to which table

○ Which columns are keys

○ Which tables are connected by foreign keys

● The words of the NLQ can be added to the 

graph based on schema links and similarity

● Much more complex neural design
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Taxonomy Overview of a Deep Learning Text-to-SQL system
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Output Decoding: Sequence-based
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🔗 [14] Language to Logical Form with Neural 

Attention (2016)

🔗 [2] Seq2SQL (2017)

🔗 [22] BRIDGE (2020)

🔗 [30] T5-3B + PICARD (2021)

● We consider two sequences:
○ NLQ (input sequence)

○ SQL query (output sequence)

● Text-to-SQL becomes a 

sequence-to-sequence transformation 

problem
○ The network learns to generate a sequence 

of tokens, which is the SQL query

● Simplifies the text-to-SQL problem

● More possibilities for errors
○ Nothing prevents syntactical errors when 

predicting

○ Usually avoided until recently

○ Recent works show promising techniques 

that help avoid such errors



Output Decoding: Sketch-based
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● We have a sketch of the query with missing 

parts that need to be filled

● Sketch used by systems designed for 

WikiSQL

● Further simplifies the task of producing a 

SQL query into smaller sub-tasks

● Hard to extend for complex queries

SELECT <AGG> <COLUMN>
( 

WHERE <COLUMN> <OP> <VALUE>
( AND <COLUMN> <OP> <VALUE> ) ∗ 

) ?

🔗 [15] SQLNet (2017)

🔗 [16] SQLova (2019)

🔗 [17] HydraNet (2020)



Output Decoding: Grammar-based
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● Generate a sequence of rules instead of 

simple tokens

● Apply the rules sequentially to get a SQL 

query

● Easier to avoid errors

● Can cover more complex SQL queries

● Needs more complex design

🔗 [18] IncSQL (2018)

🔗 [19] IRNet (2019)

🔗 [20] RAT-SQL (2020)



Taxonomy Overview of a Deep Learning Text-to-SQL system
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Neural Training

1. Fresh Start: Train the network from scratch
○ The most common approach for neural 

networks

2. Transfer Learning: First pre-train on a 
generic task, then fine-tune for text-to-SQL

○ The Computer Vision and NLP domains 
have proven its power

○ Has seen widespread use with the 
introduction of Transformer-based PLMs

3. Additional Objectives: Train for additional 

sub-tasks simultaneously with text-to-SQL
○ Training for additional tasks, related to the 

main problem, can boost performance

4. Pre-train Specific Parts: Maybe some 

components of the network can benefit by 

independent pre-training
○ GP proposes to pre-train the decoder, in 

order to better learn the output’s grammar
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Erosion: Delete parts of 
the DB schema and train 
the model to produce the 

correct SQL with the 
eroded schema

Shuffling: Randomly 
change the order of 

attributes and conditions in 
both the NLQ and SQL 
and train the network to 
re-order them correctly

🔗 [31, 32] SeaD (2021), GP (2021)



Taxonomy Overview of a Deep Learning Text-to-SQL system
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Output Refinement: Execution-Guided Decoding

● Sketch-based approaches greatly reduce 

the possibility of errors

● There are still a few possibilities
○ Aggregation function mismatch (e.g. AVG 

on string type)

○ Condition type mismatch (e.g. comparing a 

float type column with a string type value)

● Execution guided decoding helps the 

system avoid making such choices at 

prediction time

● By executing partially complete predicted 

SQL queries, the system can reject choices 

that create execution errors or yield empty 
results
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🔗 [4] Execution-Guided Decoding (2018)



Output Refinement: Constrained Decoding

● Models with sequence-based decoders are 

becoming all the more powerful (e.g., T5)

● However, their main drawback is their 

proneness to syntactic and grammatical 
errors

● Constrained decoding works to prevent 

sequence-based models from producing 

erroneous queries

● PICARD proposes a novel method for 

incrementally parsing and constraining 

auto-regressive decoders
○ For each token prediction, PICARD 

examines the top-k most probable tokens

○ If any of the k tokens would result in a 

grammatical error, it is discarded

○ If any of the k tokens contain an attribute 
that is not present in the DB, it is discarded

49

🔗 [31] PICARD (2021)



Output Refinement: Discriminative Re-ranking

● The nature of neural networks allows us to 

extract multiple predictions for the same 

NLQ

● Maybe the highest-ranked by the network 

is not always the correct

● Global-GNN proposes an additional 

network to re-rank the k highest-ranked 

predictions

50

🔗 [33] Global-GNN (2019)

Text-to-SQL System

SQL1 SQL2 SQL3 SQL4

Discriminative Re-ranker

SQL1 SQL2SQL3 SQL4



Taxonomy Overview of a Deep Learning Text-to-SQL system
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Key Text-to-SQL Systems
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Text-to-SQL 
Systems

Taking a closer look on key 
text-to-SQL systems

1. Seq2SQL

2. SQLNet

3. HydraNet

4. SQLova

5. IRNet

6. RAT-SQL

7. T5-3B + PICARD
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Seq2SQL 

● GloVe Embeddings

● Common LSTM encoders for all networks

● Separate networks predict different parts 

of the SQL query

● Trained using reinforcement learning

54

SELECT MAX ( budget ) WHERE year = 2021

🔗 [2] Seq2SQL (2017)

Schema Linking
NL 

Representation Input Encoding
Output 

Decoding Neural Training
Output 

Refinement

None Word 
Embeddings Separately Sequence-based Fresh Start None



SQLNet

● Completely sketch-based

● Each component has its own pair of LSTM 
encoders

● Introduces Column Attention
○ A neural module in each network that tries 

to emphasize words in the NLQ that might 
be connected to the table’s headers

● Without  Reinforcement Learning
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SELECT <AGG> <COLUMN>

( WHERE <COLUMN> <OP> <VALUE> 

( AND <COLUMN> <OP> <VALUE> ) ∗ ) ?

🔗 [15] SQLNet (2017)

Schema Linking
NL 

Representation Input Encoding
Output 

Decoding Neural Training
Output 

Refinement

None Word 
Embeddings Separately Sketch-based Fresh Start None



HydraNet

● Works with the same sketch as SQLNet

● Almost completely relies on BERT
○ Simple linear networks make predictions for 

the sketch’s slots using BERT’s output

● Each column is processed separately
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Condition value

WikiSQL

● Aggregation function
● SELECT column
● Number of conditions
● Condition column 
● Condition operator

🔗 [17] HydraNet (2020)

Schema Linking
NL 

Representation Input Encoding
Output 

Decoding Neural Training
Output 

Refinement

None Encoder-only 
PLM

Each column 
separately Sketch-based Transfer Learning None



HydraNet

● For each column of the table, construct the input 
for BERT containing the column_type, table_name 
and column_name

● Classification tasks:
○ Predict if column i is in the SELECT clause
○ Predict an aggregation function for column i
○ Predict if column i is in the WHERE clause
○ Predict a WHERE clause operator for column i

● Predict the condition value for column i:
○ For each NLQ token j predict if: (a) it is the start of 

the value, (b) if it is the end of the value
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P(c
i
 ∈ S

Q
|Q) = sigmoid(W

sc
 · C

CLS
)

P(y
j
 = start|c

i 
, Q) = softmax(W

start
· Q’

j
)

🔗 [17] HydraNet (2020)

Schema Linking
NL 

Representation Input Encoding
Output 

Decoding Neural Training
Output 

Refinement

None Encoder-only 
PLM

Each column 
separately Sketch-based Transfer Learning None



SQLova

● Same sketch as SQLNet

● Concatenates table columns to NLQ for 

simultaneous encoding

● Uses a much more complex network after 

taking the BERT outputs
○ Almost identical to SQLNet

● Achieves lower accuracy on WikiSQL than 

HydraNet
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🔗 [16] SQLova (2019)

Schema Linking
NL 

Representation Input Encoding
Output 

Decoding Neural Training
Output 

Refinement

None Encoder-only 
PLM Serialise Sketch-based Transfer Learning None



IRNet - Schema Linking

● Considers all n-grams of length 1-6 in the NLQ

● If a n-gram matches a column or a table it is marked 
as a complete match or partial match accordingly

● If a n-gram is inside quotes it is marked as a value 
link

○ Assumes that DB values are not accessible
○ Value links are searched on ConceptNet to find the 

linked column/table

● The NLQ is split into spans based on the types of 
discovered links
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Show all department heads born in “New York”

Show all department heads born in New York
None None Table Table Column None Value

New 
York

state
is-a

ConceptNet

Schema Linking
NL 

Representation Input Encoding
Output 

Decoding Neural Training
Output 

Refinement
n-gram match, 

Knowledge 
graphs

Encoder-only 
PLM

Separately (GloVe) 
or Serialise (BERT)

Grammar-based Transfer Learning None

🔗 [19] IRNet (2019)



IRNet - Encoding
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● Input can be encoded with GloVe or BERT
○ Accuracy with BERT is 8% higher

● Schema link tokens are appended to the 
matched NLQ spans

● Spans with multiple tokens are reduced to a 
single token using LSTM networks

● Column tokens are added to a type 
embedding (int, string, etc.)

[CLS] Show all departmentTable ... NewValue York [SEP] department_id [SEP] Name [SEP] ...

BERT
Hx1 Hx2 ... [SEP] department_id [SEP] Name [SEP] ...

LSTM LSTM

Hx3 Hxn

type1 type2

+ +

EC1 EC2

Schema Linking
NL 

Representation Input Encoding
Output 

Decoding Neural Training
Output 

Refinement
n-gram match, 

Knowledge 
graphs

Encoder-only 
PLM

Separately (GloVe) 
or Serialise (BERT)

Grammar-based Transfer Learning None

🔗 [19] IRNet (2019)



IRNet - Decoding

● Generates SemQL instead of SQL

● Generate a SemQL query as an Abstract 
Syntax Tree (AST)

○ Uses a LSTM decoder that predicts rules for 
building the SemQL AST      [28]

● When generating a column or table name, it 
can make a prediction from:

○ All schema elements 
○ Elements already used in generated query 

(memory)
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NLQ Representation

Decoder

Z

R

Select Filter

None Column Table ...

? head

Schema 
Representation

Memory

Schema Linking
NL 

Representation Input Encoding
Output 

Decoding Neural Training
Output 

Refinement
n-gram match, 

Knowledge 
graphs

Encoder-only 
PLM

Separately (GloVe) 
or Serialise (BERT)

Grammar-based Transfer Learning None

🔗 [19] IRNet (2019)



RAT-SQL - Encoder

● Question-contextualized schema graph

● Schema nodes and NLQ word nodes

● Edges are relations between them from:           
○ Schema relations
○ Name-based Linking (exact or partial 

n-gram match)
○ Value-based Linking (through DB indices or 

textual search)

● Encoding with GloVe & LSTM or BERT
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management

department

head

head_id

name

age
primary_key

head_id
foreign_key

Show all department heads

QUESTION-TABLE 
PARTIAL MATCH

QUESTION-TABLE 
EXACT MATCH

Schema Linking
NL 

Representation Input Encoding
Output 

Decoding Neural Training
Output 

Refinement

n-gram match, 
indices

Encoder-only 
PLM Graph  encoding Grammar-based Transfer Learning None

🔗 [20] RAT-SQL (2020)



RAT-SQL - Decoder

● Specially modified Transformers, for 

relation-aware self-attention, biases the 

network towards known relations (edges)

● SQL generation as an AST, by predicting a 

sequence of decoder actions
○ Uses a similar LSTM decoder to IRNet
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management department head head_id name age

Show all department heads

Relation-aware TransformersGraph 
Edges

LSTM Decoder

SELECT

name FROM

...

BERT

Schema Linking
NL 

Representation Input Encoding
Output 

Decoding Neural Training
Output 

Refinement

n-gram match, 
indices

Encoder-only 
PLM Graph  encoding Grammar-based Transfer Learning None

🔗 [20] RAT-SQL (2020)



PICARD

● PICARD is a constraining technique for 

autoregressive decoders of language models
○ Checks for spelling, syntax and grammar errors

○ Checks for availability of used attributes

○ Checks the use of correct aliases

● Tackles the drawbacks of sequence-based 
decoders

● Manages to reach the top of the Spider 

leaderboard in combination with T5-3B 
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Schema Linking
NL 

Representation Input Encoding
Output 

Decoding Neural Training
Output 

Refinement

None Enc-Dec PLM Serialisation Sequence-based Transfer Learning Constrained 
Decoding

🔗 [30] PICARD (2021)

SELECT

*

, age

SELECTFROM

head

stores

SELECT

age

Incorrect syntax Not a table name Tables in FROM clause 
don’t contain this column

*

Prediction steps
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System NL 
Representation Schema Linking Input Encoding Decoder Output Accuracy

Seq2SQL
GloVe

None

Separate
Sequence 59.4 %

SQLNet

Sketch-based

68.0 %

HydraNet

Encoder-only PLM

For each column 92.2 %
(using EG decoding)

SQLova
Serialise

89.6 %
(using EG decoding)

IRNet n-grams, KG
Grammar-based

60.1* %

RAT-SQL n-grams, indices Graph encoding 70.5* %

T5-3B+PICARD Encoder-Decoder 
PLM None Serialise Sequence 71.9%

Execution 
Accuracy 

on 
WikiSQL 
Test Set

Exact Set 
Match 

without 
Values on 

Spider 
Test Set

*Scores achieved using different language models and improvements

Text-to-SQL System Overview



Challenges and 
Research Opportunities
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Challenges: Benchmarks and Existing Systems

67

Focus on effectiveness based on the queries translated

They do not:

✗ do not measure query expressivity (from a NL or SQL standpoint)

✗ do not care about execution time or model sizes

✗ do not allow for more than one correct answers



● 216 keyword-based and 241 natural language queries

● Divided into 17 categories

● Spanning 3 datasets of varying sizes and complexities: IMDB, MAS, YELP

THOR Query Benchmark
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SQL Challenges

NL Challenges

🔗 [1] THOR (2021)



Few systems tackle most SQL challenges (to an extent),   but 
NL challenges are even harder

Challenges: Query Expressivity

69

Can we build systems that can answer any type of NL question?



No universal solutions exist
Different data sets present different intricate characteristics

  ✗   Domain-specific or application-specific solutions: 

ontologies, knowledge bases

Challenges: Universal solutions 
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Can we build systems that work well for different datasets?



•Research & Innovation Policy Making: CORDIS 
•Astrophysics: SDSS 
•Cancer Biomarker Research

Challenges: Real-life datasets
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1.  Unknown (and often cryptic) schemas

               e.g.,  u, g, specobj, photoobj

2.  Scaling to very large schemas

              Photo_obj table alone has over 500 attributes

3. Complex systems

4. No training data

Challenges: Real-life datasets
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Challenges: Deep Learning all the way?

73

Can we combine the best of both worlds? 

- techniques?

- systems?

Database-based approaches generate semantically correct SQL queries, NMT 

approaches promise to be able to generalize to different types of queries and data

  ✗   Not there yet → low query expressivity



Deep learning approaches generate one translation for a user query

  ✗   what if there are more than one way to answer a query

Challenges: One answer or more?
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We need to balance diversity and disambiguation

Show me Italian 
restaurants

1. "business categorized as restaurant and as Italian”
2. "business categorized as restaurant that serves Italian”



● Even if we solve the text-to-SQL problem, is our job done?

● How can the user validate the predicted SQL so that it matches the intention of their query?
○ Natural Language explanations of SQL (SQL-to-text)

● What if the user does not understand the DB well enough to ask a NLQ?
○ Query recommendation systems
○ Intelligent exploration systems

● What if the user does not understand the returned data?
○ Data visualisation
○ Query result explanations

Challenges: The next steps for Data Democratisation

75

Text-to-SQL systems are just one of the pieces in the data democratisation puzzle
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Thank you! Questions?
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